Indecomposable representations of orders of global dimension two
نویسندگان
چکیده
منابع مشابه
compactifications and representations of transformation semigroups
this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...
15 صفحه اولdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولIndecomposable Representations of Semisimple Lie Groups
Let G be a semisimple connected linear Lie group, w, a finite-dimensional irreducible representation of G, tr2 an infinite-dimensional irreducible representation of G which has a nontrivial extension with w,. We study the category of all Harish-Chandra modules whose composition factors are equivalent to w, and Introduction. In a series of articles [5]-[8], I. M. Gelfand, Graev and Ponomarev cla...
متن کاملIndecomposable Representations of Finite-Dimensional Algebras
Let 1c "be a field and A a finite-dimensional 7c-algebra (associative, with 1). AVe consider representations of A as rings of endomorpliisms of finitedimensional 7c-spaces, and thus JL-modules, and we ask for a classification of such representations. More generally, we may consider the following problem: given an abelian category # and simple ( = irreducible) objects F(l),..., B(n) in #, what a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1980
ISSN: 0021-8693
DOI: 10.1016/0021-8693(80)90144-1